蒙特卡洛!

xyz三维 随机生成n个点,按f(x)<0, 标记点,然后画之

这公式看起来大概是个球

硬求解,然后画图

x_mat <- matrix(seq(from = -2, to = 2, length.out = 50), 
                nrow = 50, ncol = 50, byrow = TRUE)

y_mat <- matrix(seq(from = -2, to = 2, length.out = 50), 
                nrow = 50, ncol = 50, byrow = FALSE)

z_mat1 <- x_mat * y_mat + sqrt(x_mat ^ 2 * y_mat ^ 2 - x_mat ^ 2 - y_mat ^ 2 + 1)
z_mat2 <- x_mat * y_mat - sqrt(x_mat ^ 2 * y_mat ^ 2 - x_mat ^ 2 - y_mat ^ 2 + 1)

rgl::persp3d(
    cbind(x_mat, x_mat), 
    cbind(y_mat, y_mat), 
    cbind(z_mat1, z_mat2), 
    xlim = c(-2, 2), 
    ylim = c(-2, 2), 
    zlim = c(-2, 2), 
    col = "lightblue")

似乎wolframalpha的图少了一部分?说实话这个正好是个二次函数还能有求根公式,一般性的函数虽然可以考虑用uniroot去解,但是如果形式复杂的话,求解区间的参数interval并不好给。

    fenguoerbian 谢谢。当我按照这个想法用 TikZ 绘图时,竟然有问题,看起来有点奇怪,又说不清楚,只好上图

    \documentclass{standalone}
    % TikZ 图形
    \usepackage{tikz}
    % 插入三维图形
    \usepackage{pgfplots}
    \pgfplotsset{width=13cm,compat=1.18}
    \begin{document}
    
    \begin{tikzpicture}
    \begin{axis}
    [ 
      hide axis,
      view={45}{45},
      colormap/viridis,
      axis equal image,
      samples=20, 
      samples y=20, 
      z buffer=sort, 
      opacity=0.7,
    ]
    \addplot3 [surf,domain=-1:1] (
     {x},
     {y},
     {x*y-sqrt(x^2*y^2 - x^2 - y^2 + 1)}
    );
    \addplot3 [surf,domain=-1:1] (
     {x},
     {y},
     {x*y+sqrt(x^2*y^2 - x^2 - y^2 + 1)}
    );
    \end{axis}
    \end{tikzpicture}
    \end{document}

    maxima 软件支持隐函数作图,下面的代码改了别人的,效果符合预期,细节还需调整。

    hc:x^2+y^2+z^2-2*x*y*z=1;
    draw3d(enhanced3d=true,implicit(hc,x,-1,1,y,-1,1,z,-1,1));

    cone

    rgl 包绘制的效果,无脑抄了一段,发现效果很好。

    # 代码修改自
    # https://gist.github.com/stla/c48977956eea1cf1cd581c6a5eab7686
    
    f <- function(x, y, z) {
      x^2 + y^2 + z^2 - 2 * x * y * z - 1
    }
    gradient <- function(xyz) {
      x <- xyz[1]
      y <- xyz[2]
      z <- xyz[3]
      c(
        2 * x - 2 * y * z,
        2 * y - 2 * x * z,
        2 * z - 2 * x * y
      )
    }
    
    nx <- 100
    ny <- 100
    nz <- 100
    x <- seq(-1, 1, length = nx)
    y <- seq(-1, 1, length = ny)
    z <- seq(-1, 1, length = nz)
    g <- expand.grid(x = x, y = y, z = z)
    voxel <- array(with(g, f(x, y, z)), c(nx, ny, nz))
    
    library(misc3d)
    surf <- computeContour3d(voxel, level = 0, x = x, y = y, z = z)
    
    library(rgl)
    mesh <- tmesh3d(
      vertices = t(surf),
      indices = matrix(1:nrow(surf), nrow = 3),
      homogeneous = FALSE,
      normals = -t(apply(surf, 1, gradient))
    )
    
    open3d(windowRect = c(50, 50, 550, 550))
    bg3d(rgb(255, 255, 255, maxColorValue = 255))
    shade3d(mesh, color = rgb(75, 0, 85, maxColorValue = 255))
    light3d(theta = 30, phi = 45)
    
    snapshot3d(filename = "images/ellipse-cone.png")

    目前,还不知道怎么用 TikZ 绘制,TikZ 绘制出来的图是真的漂亮,期待。

      继续按照 fenguoerbian 的思路,用 lattice 包绘制这个图像。代码如下:

      # 分两部分绘图
      fn1 <- function(x) {
        x[1] * x[2] + sqrt(x[1]^2 * x[2]^2 - x[1]^2 - x[2]^2 + 1)
      }
      
      fn2 <- function(x) {
        x[1] * x[2] - sqrt(x[1]^2 * x[2]^2 - x[1]^2 - x[2]^2 + 1)
      }
      
      df1 <- expand.grid(
        x = seq(-1, 1, length.out = 51),
        y = seq(-1, 1, length.out = 51)
      )
      df2 <- df1
      # 计算函数值
      df1$fnxy <- apply(df, 1, fn1)
      df2$fnxy <- apply(df2, 1, fn2)
      # 添加分组变量
      df1$group <- "1"
      df2$group <- "2"
      # 合并数据
      df <- rbind(df1, df2)
      
      library(lattice)
      # 自定义调色板
      custom_palette <- function(irr, ref, height, saturation = 0.9) {
        hsv(
          h = height, s = 1 - saturation * (1 - (1 - ref)^0.5),
          v = irr
        )
      }
      # 绘图
      wireframe(
        data = df, fnxy ~ x * y, groups = group,
        shade = TRUE, drape = FALSE,
        xlab = expression(x[1]),
        ylab = expression(x[2]),
        zlab = list(expression(
          italic(f) ~ group("(", list(x[1], x[2]), ")")
        ), rot = 90),
        scales = list(arrows = FALSE, col = "black"),
        shade.colors.palette = custom_palette,
        # 减少三维图形的边空
        lattice.options = list(
          layout.widths = list(
            left.padding = list(x = -0.5, units = "inches"),
            right.padding = list(x = -1.0, units = "inches")
          ),
          layout.heights = list(
            bottom.padding = list(x = -1.5, units = "inches"),
            top.padding = list(x = -1.5, units = "inches")
          )
        ),
        par.settings = list(axis.line = list(col = "transparent")),
        screen = list(z = 30, x = -65, y = 0)
      )

      之前提及 TikZ 绘图效果很奇怪,我把绘图区间限制在 [1,0]×[1,0][-1,0] \times [-1,0] 观察效果,代码如下

      \documentclass{standalone}
      % TikZ 图形
      \usepackage{tikz}
      % 插入三维图形
      \usepackage{pgfplots}
      \pgfplotsset{width=13cm,compat=1.18}
      \begin{document}
      
      \begin{tikzpicture}
      \begin{axis}
      [ 
        view/h=-30,
        colormap/viridis,
        samples=20,
        axis equal image,
        z buffer=sort,
        opacity=0.7,
      ]
      % \addplot3 [surf,domain=-1:0] (
      %  {x},
      %  {y},
      %  {x*y - sqrt(x^2*y^2 - x^2 - y^2 + 1)}
      % );
      \addplot3 [surf,shader=interp,domain=-1:0] (
       {x},
       {y},
       {x*y + sqrt(x^2*y^2 - x^2 - y^2 + 1)}
      );
      \end{axis}
      \end{tikzpicture}
      
      \end{document}

      这就可以很方便地看出奇怪之处了,图形竟然不连续,下图中圈出来的红色部分。

        我来两个非代码解决方案。

        首先,可以用 macOS 自带的 Grapher:

        其次,可以用 Blender + Sverchok:

          9 个月 后

          Cloud2016 去年把这个问题提交给 pgfplots 开发者,今收到回复,原因竟然是浮点数问题,将方程改写一下就好了。