我现在遇到一个困难,肯请各位帮助,谢谢!
我有一个三因素的实验,采用方差分析(ANOVA)来分析各因素、及因素间交互作用的影响。在 R 中,一切都很简单。举一例来说明:
我的问题是如何理解那个线性模型给出的系数,以及如何解释那个系数为什么是显著的?当 options(contrasts) 变化时,线性模型的系数会发生变化,如何理解这种变化?
谢谢!!
我有一个三因素的实验,采用方差分析(ANOVA)来分析各因素、及因素间交互作用的影响。在 R 中,一切都很简单。举一例来说明:
<br />
> N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)<br />
> P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)<br />
> K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)<br />
> yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,<br />
+ 55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)<br />
> <br />
> npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),<br />
+ K = factor(K), yield = yield)<br />
> npk.aov <- aov(yield ~ block + N + P + K + N:P + N:K + P:N, npk)<br />
> npk.lm <- lm(yield ~ block + N + P + K + N:P + N:K + P:N, npk)<br />
> summary(npk.aov)<br />
Df Sum Sq Mean Sq F value Pr(>F) <br />
block 5 343.29 68.66 4.8047 0.010458 * <br />
N 1 189.28 189.28 13.2459 0.002997 **<br />
P 1 8.40 8.40 0.5879 0.456914 <br />
K 1 95.20 95.20 6.6622 0.022808 * <br />
N:P 1 21.28 21.28 1.4893 0.244003 <br />
N:K 1 33.14 33.14 2.3188 0.151769 <br />
Residuals 13 185.77 14.29 <br />
---<br />
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 <br />
> summary(npk.lm)<br />
<br />
Call:<br />
lm(formula = yield ~ block + N + P + K + N:P + N:K + P:N, data = npk)<br />
<br />
Residuals:<br />
Min 1Q Median 3Q Max <br />
-5.1583 -1.8250 0.1583 2.0000 4.3667 <br />
<br />
Coefficients:<br />
Estimate Std. Error t value Pr(>|t|) <br />
(Intercept) 51.683 2.559 20.195 3.36e-11 ***<br />
block2 3.425 2.673 1.281 0.22246 <br />
block3 6.750 2.673 2.525 0.02535 * <br />
block4 -3.900 2.673 -1.459 0.16829 <br />
block5 -3.500 2.673 -1.309 0.21307 <br />
block6 2.325 2.673 0.870 0.40018 <br />
N1 9.850 2.673 3.685 0.00275 ** <br />
P1 0.700 2.183 0.321 0.75351 <br />
K1 -1.633 2.183 -0.748 0.46756 <br />
N1:P1 -3.767 3.087 -1.220 0.24400 <br />
N1:K1 -4.700 3.087 -1.523 0.15177 <br />
---<br />
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 <br />
<br />
Residual standard error: 3.78 on 13 degrees of freedom<br />
Multiple R-squared: 0.788, Adjusted R-squared: 0.625 <br />
F-statistic: 4.833 on 10 and 13 DF, p-value: 0.004942 <br />
<br />
> dummy.coef(npk.lm)<br />
Full coefficients are <br />
<br />
(Intercept): 51.68333 <br />
block: 1 2 3 4 5 6<br />
0.000 3.425 6.750 -3.900 -3.500 2.325<br />
N: 0 1 <br />
0.00 9.85 <br />
P: 0 1 <br />
0.0 0.7 <br />
K: 0 1 <br />
0.000000 -1.633333 <br />
N:P: 0:0 1:0 0:1 1:1 <br />
0.000000 0.000000 0.000000 -3.766667 <br />
N:K: 0:0 1:0 0:1 1:1 <br />
0.0 0.0 0.0 -4.7 <br />
> <br />
我的问题是如何理解那个线性模型给出的系数,以及如何解释那个系数为什么是显著的?当 options(contrasts) 变化时,线性模型的系数会发生变化,如何理解这种变化?
谢谢!!