We used principal component extraction and a direct oblimin rotation, with the number of factors based on eigenvalues greater than 1.00. Four factors met this criterion (eigenvalues = 4.12, 1.53, 1.36, and 1.07), accounting for a total of 62.0% variance (32%, 12%, 10%, and 8%, respectively). However, based on a parallel analysis procedure (variables = 13, participants = 131, replications = 100;
Glorfeld, 1995;Watkins, 2000), generated eigenvalues justified examination of only the initial three factors (random eigenvalue Number 1 = 1.57, Number 2 = 1.41, Number 3 = 1.31, and Number 4 = 1.20).
我的问题:
1。parallel analysis procedure分析后特征值大于1的也是4个,文献里却取3个,为什么?
2。我使用MonteCarloPA.exe程序计算(variables = 13, participants = 131, replications = 100)的结果与文献里(random eigenvalue Number 1 = 1.57, Number 2 = 1.41, Number 3 =1.31, and Number 4 = 1.20)是一致的。这里为什么要取replications的值为100?初始样本数为131。
Glorfeld, 1995;Watkins, 2000), generated eigenvalues justified examination of only the initial three factors (random eigenvalue Number 1 = 1.57, Number 2 = 1.41, Number 3 = 1.31, and Number 4 = 1.20).
我的问题:
1。parallel analysis procedure分析后特征值大于1的也是4个,文献里却取3个,为什么?
2。我使用MonteCarloPA.exe程序计算(variables = 13, participants = 131, replications = 100)的结果与文献里(random eigenvalue Number 1 = 1.57, Number 2 = 1.41, Number 3 =1.31, and Number 4 = 1.20)是一致的。这里为什么要取replications的值为100?初始样本数为131。