[quote]引用第17楼hangover于2007-04-17 02:05发表的“”:
如果用Likelihood可以做的,何必再用MCMC?missing data 可否用prior补一下?posterior is propotional to the product of likelihood and prior。 likelihood principal 还是有效的。
如果spiegelhalter说不行,winbugs肯定不行,至少现在。那你只能自己写code了。你把模型放上来,我可以帮你想想。winbugs我用过,很久以前了,不过现在实在没有时间去查manual 去翻译模型。隔行如隔山, 我觉得你的模型很复杂, 但是也很想学习一下。[/quote]
谢谢楼上的指点.我打算用data imputation的方法来弥补缺失数据.所以这个目前不是大问题.至于你说的模型,我太不理解.我上面的code里就是一个标准的panel data probit model了.里面复杂的部分是关于如何 orthogonal reparametrizations.按照Tony Lancaster的说法,是为了“This is an attempt to reduce the dependence of inference about beta on the choice of prioior for the individual effects (alpha i).”说老实话他关于如何处理incidental parameter problenm的部分我没有看得太懂.我也不会更复杂的编程了.我打算模仿Tony的代码改写成包含多个自变量的codes.
就是这个部分
alpha ~ dnorm(nu, 1)
nu <- lam [i, z]
z ~ dcat (p[ ])
lam[i, 1] <- -beta * x[i, 1]
lam[i, 2] <- -beta * x[i, 2]
lam[i, 3] <- -beta * x[i, 3]
lam[i, 4] <- -beta * x[i, 4]
lam[i, 5] <- -beta * x[i, 5]
lam[i, 6] <- -beta * x[i, 6]
lam[i, 7] <- -beta * x[i, 7]
lam[i, 8] <- -beta * x[i, 8]
lam[i, 9] <- -beta * x[i, 9]
lam[i, 10] <- -beta * x[i, 10]
lam[i, 11] <- -beta * x[i, 11]
lam[i, 12] <- -beta * x[i, 12]
lam[i, 13] <- -beta * x[i, 13]
如果用Likelihood可以做的,何必再用MCMC?missing data 可否用prior补一下?posterior is propotional to the product of likelihood and prior。 likelihood principal 还是有效的。
如果spiegelhalter说不行,winbugs肯定不行,至少现在。那你只能自己写code了。你把模型放上来,我可以帮你想想。winbugs我用过,很久以前了,不过现在实在没有时间去查manual 去翻译模型。隔行如隔山, 我觉得你的模型很复杂, 但是也很想学习一下。[/quote]
谢谢楼上的指点.我打算用data imputation的方法来弥补缺失数据.所以这个目前不是大问题.至于你说的模型,我太不理解.我上面的code里就是一个标准的panel data probit model了.里面复杂的部分是关于如何 orthogonal reparametrizations.按照Tony Lancaster的说法,是为了“This is an attempt to reduce the dependence of inference about beta on the choice of prioior for the individual effects (alpha i).”说老实话他关于如何处理incidental parameter problenm的部分我没有看得太懂.我也不会更复杂的编程了.我打算模仿Tony的代码改写成包含多个自变量的codes.
就是这个部分
alpha ~ dnorm(nu, 1)
nu <- lam [i, z]
z ~ dcat (p[ ])
lam[i, 1] <- -beta * x[i, 1]
lam[i, 2] <- -beta * x[i, 2]
lam[i, 3] <- -beta * x[i, 3]
lam[i, 4] <- -beta * x[i, 4]
lam[i, 5] <- -beta * x[i, 5]
lam[i, 6] <- -beta * x[i, 6]
lam[i, 7] <- -beta * x[i, 7]
lam[i, 8] <- -beta * x[i, 8]
lam[i, 9] <- -beta * x[i, 9]
lam[i, 10] <- -beta * x[i, 10]
lam[i, 11] <- -beta * x[i, 11]
lam[i, 12] <- -beta * x[i, 12]
lam[i, 13] <- -beta * x[i, 13]