x
2.06
1.08
1.94
1.32
0.75
0.18
0.72
0.22
0.34
y
1.71
2.73
2.29
1.71
2.40
0.45
0.58
0.35
0.63
z
2.47
1.75
2.44
2.50
4.17
2.09
1.77
1.77
b
0.00
0.00
0.01
0.01
0.01
0.20
0.30
0.10
请问我有4组数,要比较它们之间有显著差异的数,用什么方法可以做
x
2.06
1.08
1.94
1.32
0.75
0.18
0.72
0.22
0.34
y
1.71
2.73
2.29
1.71
2.40
0.45
0.58
0.35
0.63
z
2.47
1.75
2.44
2.50
4.17
2.09
1.77
1.77
b
0.00
0.00
0.01
0.01
0.01
0.20
0.30
0.10
请问我有4组数,要比较它们之间有显著差异的数,用什么方法可以做
1,u need to know whether your 4 groups are paired or unpaired
2,if they are unpaired u can use Kruskal-Wallis-test
3,if they are paired u can use Friedman-test
these are nonparametric tests, all of them u can find in R
回复 第2楼 的 SPSS17: 谢谢 They are unpaired.
但是我做了之后还是有点问题
kruskal.test只能给出:
Kruskal-Wallis chi-squared = 22.5146, df = 3, p-value = 5.097e-05
我想得到的是这几组数里面有显著差异的值,这个有办法么
回复 第3楼 的 camelbbs:as your data are unpaired, u have used KW-test, and p-value is p-value = 5.097e-05 so that means in 4 groups at least there are two groups are significantly different.so "p-value = 5.097e-05" is just 有显著差异的值
回复 第4楼 的 SPSS17:
thanks a lot!!
But can I get which two groups are significantly different.
for sure u can do it with Wilcoxon-Rank-Sum-test for 2 unpaired groups, Wilcoxon-Signed-Rank-test for 2 paired groups, both can be found in R
回复 第1楼 的 camelbbs:用pair.wilcox.test 或者TukeyHSD(不知道拼错没,大概就是这个)都可以进行多重比较。还有pair.t.test估计这些是你想要的组之间的两两比较。
新手,学习中~~
#比较一下4组数据之间是否有显著差异
x=c(2.06,1.08,1.94,1.32,0.75,0.18,0.72,0.22,0.34)
y=c(1.71,2.73,2.29,1.71,2.40,0.45,0.58,0.35,0.63)
z=c(2.47,1.75,2.44,2.50,4.17,2.09,1.77,1.77)
b=c(0.00,0.00,0.01,0.01,0.01,0.20,0.30,0.10)
#各组数据之间不配对的比较方法
kruskal.test(list(x, y, z, b))
#各组数据之间配对的比较方法
friedman.test(as.matrix(cbind(x,y,z,b)))
#找出个组数据间差异的大小
#t检验 两总体方差未知但相同,用以两平均数之间差异显著性的检验。
#适用条件
#(1) 已知一个总体均数;
#(2) 可得到一个样本均数及该样本标准差;
#(3) 样本来自正态或近似正态总体。
#pairwise.t.test这里不适用(不服从正态分布、方差不同)
l=list(x=x,y=y,z=z,b=b)
#方差不同
lapply(l,sd)
#不服从正态分布
qqnorm(c(x,y,z,b));shapiro.test(c(x,y,z,b));
#用法
pairwise.t.test(c(x,y,z,b),c(rep(1:2,each=9),rep(3:4,each=8)))
#The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test
#used when comparing two related samples, matched samples, or repeated
#measurements on a single sample to assess whether their population mean ranks
#differ (i.e. it is a paired difference test). It can be used as an
#alternative to the paired Student's t-test, t-test for matched pairs,
#or the t-test for dependent samples when the population cannot be assumed
#to be normally distributed.
pairwise.wilcox.test(c(x,y,z,b),c(rep(1:2,each=9),rep(3:4,each=8)))
Pairwise comparisons using Wilcoxon rank sum test
data: c(x, y, z, b) and c(rep(1:2, each = 9), rep(3:4, each = 8))
1 2 3
2 0.2891 - -
3 0.0135 0.0965 -
4 0.0068 0.0036 0.0045
P value adjustment method: holm
#结论:第4组和其他三组都有显著差异,第3组和第1组有显著差异
另:
上面SPSS17 的回复"....and p-value is p-value = 5.097e-05 so that means in 4 groups at least there are two groups are significantly different."为什么从p-value的取值就可以判断出至少有两组有显著区别? 不理解阿~