<br />
xx= c(0.054109326, 0.030062775,-0.084484650,-0.030417398, 0.129971162, 0.027219980,<br />
-0.127560850, 0.117744837, 0.089408216,-0.136622767,-0.059829294, 0.042510965,<br />
0.078971832, 0.104406809, 0.048873626,-0.150192614,-0.070094196,-0.020664303,<br />
-0.047555354,-0.017869914, 0.008704639,-0.020515520,0.023814828,0.018093041,<br />
0.036519402,-0.016964719,0.017262081,0.052619006,-0.041050424,-0.034393467,<br />
0.036546402)<br />
xx=ts(xx)<br />
#第一种方法<br />
library(tseries)<br />
xx.arma=arma(xx,lag=list(ma=c(1,2)),include.intercept=F)<br />
xx.arma<br />
#第二种方法<br />
xx.arima=arima(xx,order=c(0,0,2),include.mean =F)<br />
xx.arima<br />
#比较残差的散点图<br />
xx.arma$residuals<br />
xx.arima$resid<br />
plot(xx.arma$residuals,xx.arima$resid)<br />
abline(0,1,col=2,lwd=3)<br />
</p>
结果:
<br />
> xx= c(0.054109326, 0.030062775,-0.084484650,-0.030417398, 0.129971162, 0.027219980,<br />
+ -0.127560850, 0.117744837, 0.089408216,-0.136622767,-0.059829294, 0.042510965,<br />
+ 0.078971832, 0.104406809, 0.048873626,-0.150192614,-0.070094196,-0.020664303,<br />
+ -0.047555354,-0.017869914, 0.008704639,-0.020515520,0.023814828,0.018093041,<br />
+ 0.036519402,-0.016964719,0.017262081,0.052619006,-0.041050424,-0.034393467,<br />
+ 0.036546402)<br />
> xx=ts(xx)<br />
> #第一种方法<br />
> library(tseries)<br />
> xx.arma=arma(xx,lag=list(ma=c(1,2)),include.intercept=F)<br />
警告信息:<br />
In arma(xx, lag = list(ma = c(1, 2)), include.intercept = F) :<br />
order is ignored<br />
> xx.arma</p>
<p>Call:<br />
arma(x = xx, lag = list(ma = c(1, 2)), include.intercept = F)</p>
<p>Coefficient(s):<br />
ma1 ma2<br />
-0.1191 -0.8591 </p>
<p>> #第二种方法<br />
> xx.arima=arima(xx,order=c(0,0,2),include.mean =F)<br />
> xx.arima</p>
<p>Call:<br />
arima(x = xx, order = c(0, 0, 2), include.mean = F)</p>
<p>Coefficients:<br />
ma1 ma2<br />
0.0008 -0.6971<br />
s.e. 0.3311 0.3331</p>
<p>sigma^2 estimated as 0.003063: log likelihood = 45.07, aic = -84.14<br />
> #比较残差的散点图<br />
> xx.arma$residuals<br />
Time Series:<br />
Start = 1<br />
End = 31<br />
Frequency = 1<br />
[1] NA NA -0.0844846500 -0.0404758886 0.0525689701 -0.0012953442<br />
[7] -0.0825515180 0.1068036310 0.0312014953 -0.0411498622 -0.0379223495 0.0026429835<br />
[13] 0.0467062894 0.1122381856 0.1023631198 -0.0415784323 0.0128987735 -0.0548498703<br />
[19] -0.0430038995 -0.0701129705 -0.0365887200 -0.0851077837 -0.0177522989 -0.0571391006<br />
[25] 0.0144650677 -0.0643324368 0.0220302190 -0.0000280347 -0.0221269512 -0.0370519213<br />
[31] 0.0131251947<br />
> xx.arima$resid<br />
Time Series:<br />
Start = 1<br />
End = 31<br />
Frequency = 1<br />
[1] 0.044387707 0.024654175 -0.054904652 -0.015138159 0.091425763 0.016817448<br />
[7] -0.064880088 0.127220070 0.044447395 -0.048931672 -0.028928431 0.008632592<br />
[13] 0.058769786 0.110176613 0.089618480 -0.073523119 -0.007606578 -0.071844835<br />
[19] -0.052788530 -0.067880804 -0.028031943 -0.067799911 0.004329126 -0.029170614<br />
[25] 0.039560009 -0.037330935 0.044869976 0.026558178 -0.009791723 -0.015870968<br />
[31] 0.029733058<br />
> plot(xx.arma$residuals,xx.arima$resid)<br />
> abline(0,1,col=2,lwd=3)<br />
</p>
[attachment=228276,1634]