zuozhaokai
有一组变量脑钠肽(BNP),不知如何用SPSS绘制其预测CAD(冠心病)患者1月内死亡的ROC曲线,及不同BNP浓度(如25%百分位数、中位数、75%百分位数等)预测CAD患者1月内死亡的敏感性及特异性。弄了2天无结果,SPSS的资料无法上传,请感兴趣的大侠不吝赐教,我可通过邮箱给您发过去,帮菜鸟解决一下难题。我的邮箱:zuozhk@sina.com。多谢多谢。
rtist
pls post it to SPSS board.
hyfweb
spss 15.0
To Obtain an ROC Curve
From the menus choose:
Analyze
ROC Curve...
Select one or more test probability variables.
Select one state variable.
Identify the positive value for the state variable.
zuozhaokai
非常感谢楼上两位的指点。在网上搜集了部分资料,和大家共享。
ROC(Receiver Operating Characteristic)曲线,用于二分类判别效果的分析与评价.一般自变量为连续变量,因变量为二分类变量.
基本原理是:通过判断点(cutoff point/cutoff value)的移动,获得多对灵敏度(sensitivity)和误判率(1-Specificity(特异度)),以灵敏度为纵轴,以误判率为横轴,连接各点绘制曲线,然后计算曲线下的面积,面积越大,判断价值越高.
灵敏度:就是把实际为真值的判断为真值的概率.
特异度:就是把实际为假值的判断为假值的概率.
误判率:就是把实际为假值的判断为真值的概率,其值等于1-特异度.
将绘成的曲线与斜45度的直线对比,若差不多重合,说明自变量对因变量的判断价值很差,若越远离斜45度的直线即曲线下的面积越大,说明自变量对因变量的判断价值越好,即根据自变量可以较为正确的判断因变量.
使用SPSS的操作过程如下:
Graphs/ROC Curve:Test variable选自变量(连续型变量),state varibale选因变量(二分类变量)display的选项一般全选.
运行结果:1.ROC曲线,可直观地看到曲线形状.
2.Area under the curve:曲线下方的面积,包括面积值,显著性分析,置信区间.
3.Coordinates of the curve:ROC曲线各点对应的灵敏度和误判率.
zuozhaokai
ROC曲线啊,搞得我头大
这几日在做统计,那个ROC曲线,搞得我头都大了,so,从网上找了些高人的指点,恶补一番:
(一)ROC曲线的概念
受试者工作特征曲线(receiver operator characteristic curve, ROC曲线),最初用于评价雷达性能,又称为接收者操作特性曲线。ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。
传统的诊断试验评价方法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。ROC曲线的评价方法与传统的评价方法不同,无须此限制,而是根据实际情况,允许有中间状态,可以把试验结果划分为多个有序分类,如正常、大致正常、可疑、大致异常和异常五个等级再进行统计分析。因此,ROC曲线评价方法适用的范围更为广泛。
(二)ROC曲线的主要作用
1.ROC曲线能很容易地查出任意界限值时的对疾病的识别能力。
2.选择最佳的诊断界限值。ROC曲线越靠近左上角,试验的准确性就越高。最靠近左上角的ROC曲线的点是错误最少的最好阈值,其假阳性和假阴性的总数最少。
3.两种或两种以上不同诊断试验对疾病识别能力的比较。在对同一种疾病的两种或两种以上诊断方法进行比较时,可将各试验的ROC曲线绘制到同一坐标中,以直观地鉴别优劣,靠近左上角的ROC曲线所代表的受试者工作最准确。亦可通过分别计算各个试验的ROC曲线下的面积(AUC)进行比较,哪一种试验的AUC最大,则哪一种试验的诊断价值最佳。
(三)ROC曲线分析的主要步骤
1.ROC曲线绘制。依据专业知识,对疾病组和参照组测定结果进行分析,确定测定值的上下限、组距以及截断点(cut-off point),按选择的组距间隔列出累积频数分布表,分别计算出所有截断点的敏感性、特异性和假阳性率(1-特异性)。以敏感性为纵坐标代表真阳性率,(1-特异性)为横坐标代表假阳性率,作图绘成ROC曲线。
2.ROC曲线评价统计量计算。ROC曲线下的面积值在1.0和0.5之间。在AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好。AUC在0.5~0.7时有较低准确性,AUC在0.7~0.9时有一定准确性,AUC在0.9以上时有较高准确性。AUC=0.5时,说明诊断方法完全不起作用,无诊断价值。AUC<0.5不符合真实情况,在实际中极少出现。
3.两种诊断方法的统计学比较。两种诊断方法的比较时,根据不同的试验设计可采用以下两种方法:①当两种诊断方法分别在不同受试者身上进行时,采用成组比较法。②如果两种诊断方法在同一受试者身上进行时,采用配对比较法。
(四)ROC曲线的优点
该方法简单、直观,通过图示可观察分析方法的临床准确性,并可用肉眼作出判断。ROC曲线将灵敏度与特异性以图示方法结合在一起,可准确反映某分析方法特异性和敏感性的关系,是试验准确性的综合代表。ROC曲线不固定分类界值,允许中间状态存在,利于使用者结合专业知识,权衡漏诊与误诊的影响,选择一更佳截断点作为诊断参考值。提供不同试验之间在共同标尺下的直观的比较,ROC曲线越凸越近左上角表明其诊断价值越大,利于不同指标间的比较。曲线下面积可评价诊断准确性。
(五)SPSS软件实现ROC分析
SPSS 9.0以上版本可进行ROC分析,操作步骤如下:
1.定义列变量,并输入数据
(1)诊断分类值或检测结果(test):多个诊断试验则定义test1,test2,...
(2)金标准类别(group):1=病例组,0=对照组
(3)分类频数(freq),需要进一步执行第二步
2.说明频数变量 路径:Data\Weight Case..., 选项:Weight case by, 填表:Freqency Variable (freq)
3.ROC分析: 路径:Grahps\Roc Curve... 填表:Test Variable(test), State Variable (group), Value of state variable,选项包括:
(display) ROC Curve,with diagonal reference line (机会线), standard error and confidence interval (面积的标准误,及其可信区间), Coordinate points of the ROC curve (ROC曲线的坐标点), options:test direction (如果检测值小划归为阳性,则需要选), cofidence level (%):需要除95%以外的可信度,可在此定义
如果是连续型测量资料,则不需要第1步的(3)及第2步
zuozhaokai
如大家需要,我可把spss教程发给需要的,有word格式的,有pdf格式的,但不知如何贴在这里。
wrzmilan
我检测了病人和正常人的一项指标,想做个ROC曲线,请哪位高手发个具体操作的教程,视频最好啦
谢谢!
sunjing
非常谢谢!
十分实用
cqdoudou
zuozhaokai ,麻烦将spss roc 教程发一份给我,cqdoudou@126.com [s:15]
cqdoudou
我正在学习做ROC曲线,我的数据是每批次要做大量数据(1000个样本量)结果出来有真阳性,假阴性,要做30批次,同时还有对照组的假阳性和真阴性,请问如何将下面数据输入到SPSS?
实验组 对照组
实验批次 实验组样本数 阳性(数) 阴性(数) 阳性(数) 阴性(数)
1 10000 120 9880 120 9880
2 10000 150 9850 120 9880
3 10000 140 9860 140 9860
4 10000 130 9870 130 9870
tato27
hetong_007
回复 第11楼 的 tato27:可以参考http://stackoverflow.com/questions/11467855/roc-curve-in-r-using-rocr-package
nan.xiao
distiner