[quote]引用第3楼pengchy于2009-08-13 10:14发表的 回 2楼(fengl) 的帖子 :
或者先用倍数的方法筛选,然后再t.test
[/quote]
Hi,pengchy,你有兴趣帮我分析下这几个数据的差异表达基因吗。我用R得出的结果居然和作者的不一样。PA (GSM49953.CEL.gz and GSM49954.CEL.gz) and LM2(GSM49955.CEL.gz, GSM49956.CEL.gz and GSM49957.CEL.gz).paper "Genes that mediate breast cancer metastasis to lung",supplementary method 2 in this paper.
我的代码如下
library(affy)<br />
LM2.PA <- ReadAffy()<br />
LM2.PA.mas5 <- mas5(LM2.PA)<br />
eSet <- exprs(LM2.PA.mas5)<br />
LM2.PA.p.value.all.genes = apply(eSet,1,function(x){t.test(x[1:2],x[3:5]) $p.value})<br />
LM2.PA.sub1 = subset(LM2.PA.p.value.all.genes,LM2.PA.p.value.all.genes<0.05)<br />
length(LM2.PA.sub1)<br />
names.sub1 <- names(LM2.PA.sub1)<br />
eSet.sub1 = eSet[names.sub1,]<br />
eSet.sub2 = subset(eSet.sub1,eSet.sub1[,1]>200 | eSet.sub1[,2]>200 | eSet.sub1[,3]>200 | eSet.sub1[,4]>200 | eSet.sub1[,5]>200)<br />
length(row.names(eSet.sub2))<br />
PA.raw.mean=apply(eSet.sub2[,c(1:2)],1,mean)<br />
LM2.raw.mean=apply(eSet.sub2[,c(3:5)],1,mean)<br />
eSet.sub3=rbind(subset(eSet.sub2,(PA.raw.mean/LM2.raw.mean)>3),subset(eSet.sub2,(LM2.raw.mean/PA.raw.mean)>3))<br />
length(row.names(eSet.sub3))