木有人理我啊,呵呵。我自己又琢磨了一下,写了下面的R代码,还是麻烦大牛们帮我看看对不对。
数据是iris,分类器是multinomial logistic regression在nnet包里面,ROC分析使用的是pROC包,目的是求出AUC的值。和原始帖子的区别就是分别使用了最后预测概率矩阵的每一列,而不是全部3列.
代码:
<br />
# iris data (3-class ROC)<br />
library(nnet)<br />
library(pROC) # should be installed first: install.packages('pROC')<br />
data(iris)<br />
# 3-class logistic regression<br />
model = multinom(Species~., data = iris, trace = F)<br />
# confusion matrix (z1) & accuracy (E1)<br />
z1 = table(iris[, 5], predict(model, data = iris))<br />
E1 = sum(diag(z1)) / sum(z1)<br />
z1;E1<br />
# setosa versicolor virginica<br />
# setosa 50 0 0<br />
# versicolor 0 49 1<br />
# virginica 0 1 49<br />
#[1] 0.9866667<br />
# prediction model (still training data set)<br />
pre = predict(model, data = iris, type='probs')<br />
# AUC measure<br />
modelroc = mean(<br />
c(as.numeric(multiclass.roc(iris$Species, pre[,1])$auc),<br />
as.numeric(multiclass.roc(iris$Species, pre[,2])$auc),<br />
as.numeric(multiclass.roc(iris$Species, pre[,3])$auc)<br />
)<br />
)<br />
modelroc<br />
## RESULT ##<br />
# [1] 0.9803556<br />
这个结果貌似很靠谱了,但还是心里没底,我觉得和Hand & Till (2001)的文章还是不符合,帮忙看看啊。多谢大牛们了!!!!
P.S.
相关的参考链接:
pROC package:
http://www.inside-r.org/packages/cran/pROC/docs/multiclass.roc
Hand & Till (2001) original paper:
http://link.springer.com/article/10.1023%2FA%3A1010920819831
StackOverflow:
http://stackoverflow.com/questions/20527711/3-class-roc-analysis-in-r-proc-package
</p>